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Abstract

The problem of the finite deformation of a composite sphere subjected to a spherically symmetric dead load traction

is revisited focusing on the formation of a cavity at the interface between a hyperelastic, incompressible matrix shell and

a rigid inhomogeneity. Separation phenomena are assumed to be governed by a vanishingly thin interfacial cohesive

zone characterized by uniform normal and tangential interface force–separation constitutive relations. Spherically

symmetric cavity shapes (spheres) are shown to be solutions of an interfacial integral equation depending on the strain

energy density of the matrix, the interface force constitutive relation, the dead loading and the volume concentration of

inhomogeneity. Spherically symmetric and non-symmetric bifurcations initiating from spherically symmetric equili-

brium states are analyzed within the framework of infinitesimal strain superimposed on a given finite deformation. A

simple formula for the dead load required to initiate the non-symmetrical rigid body mode is obtained and a detailed

examination of a few special cases is provided. Explicit results are presented for the Mooney–Rivlin strain energy

density and for an interface force–separation relation which allows for complete decohesion in normal separation.
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1. Introduction

This paper is concerned with separation phenomena at the interface of a finitely deformed composite

sphere. (A recent, related paper (Levy, 2001) has treated the problem of separation of a rigid cylindrical
fiber embedded in an unbounded incompressible matrix.) The purpose is to examine the influence of factors

such as interface constitutive parameters, volume concentration of inhomogeneity, etc. on the formation of

spherically symmetric and non-symmetric cavities by interfacial separation. We adopt the viewpoint, first

espoused by Needleman (1987), that atomistically sharp, compliant interfaces can be modeled by uniform

cohesive zones of vanishing thickness. Defect dominated response can be incorporated within the cohesive

zone framework (Needleman, 1990a,b) although this is not considered here. The first part of the paper
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treats the spherically symmetric problem and essentially extends previous work (Horgan and Pence,

1989a,b) on the finitely deformed, rigid interface composite sphere to configuration dependent (interface)

boundary conditions. The focus here however is on interfacial separation phenomena and not on cavitation

occurring for example at the center of a uniform elastic inclusion. Problems of this type have received
detailed treatment beginning with the work of Ball (1982).

In the first part of the paper, we formulate the equations for spherically symmetric equilibrium although

we defer an analysis of the spherically symmetric bifurcation problem to the section that follows where it is

treated as a special case. In particular, we derive an integral equation governing the evolution of interface

stretch with dead load, which involves the matrix strain energy density, the interface force constitutive law

and the volume concentration of inhomogeneity. The second part of the paper examines spherically

symmetric and non-symmetric bifurcation from the spherically symmetric equilibrium states considered in

the first part. We do this by utilizing the theory of infinitesimal deformation superimposed on a given finite
strained state in a manner similar to that of Ogden (1984) in his study of the related problem of bifurcation

of the finitely deformed spherical shell subjected to internal pressure. First, a local bifurcation analysis is

carried out, assuming superimposed states are spherically symmetric. Global results are presented for the

case of the Mooney–Rivlin matrix and an exponential interface force–separation law (Ferrante et al., 1982).

Next we focus on the first non-symmetrical mode characterized by the rigid displacement of the inclusion

and we produce formulae for the critical load assuming (i) a smooth interface (i.e., only normal tractions

are supported) and, (ii) an existing interface constitutive model accounting for interfacial shear-slip. Be-

cause the bounded matrix shell, as opposed to unbounded matrix, accounts in some sense for inclusion
interaction, results are provided which indicate the influence of volume concentration of inhomogeneity on

behavior. We conclude the paper with a consideration of parameter domains that govern the different types

of bifurcation.

2. Spherically symmetric equilibrium states

2.1. General formulation

Consider a composite sphere B consisting of an inner spherical domain X (the inclusion) and an outer
spherical shell B–X (the matrix). Assume X is bounded by the surface oX� and B–X is bounded by outer
surface oB and inner surface oXþ, such that in the undeformed state oX� ¼ oXþ which we call the interface.

Fix a single Cartesian system with origin o at the inclusion center, material point coordinates (p1; p2; p3),
place coordinates (x1; x2; x3) and basis (e1; e2; e3). Introduce a spherical coordinate system with coordinates
(R;H;U) and physical basis (eR; eH; eU) associated with material points, and another spherical coordi-

nate system with coordinates (r; h;u) and physical basis (er; eh; euÞ associated with places such that
eRðH ¼ 0;UÞ ¼ erðh ¼ 0;uÞ ¼ e3. The domains X and B–X are defined by,

X ¼ fðR;H;UÞjR 2 ð0;R0Þ;H 2 ð0; pÞ;U 2 ð0; 2pÞg
B–X ¼ fðR;H;UÞjR 2 ðR0;R1Þ;H 2 ð0; pÞ;U 2 ð0; 2pÞg:

ð1Þ

In this paper we assume that the inclusion is rigid and that the matrix is isotropic, incompressible and

hyperelastic. Furthermore, in this section we seek only spherically symmetric solutions so that we will in
effect constrain the inclusion against rigid displacement. This assumption will be relaxed in the section on

non-symmetrical solutions that follows.

Spherically symmetric deformations are of the form,

r ¼ f ðRÞ; h ¼ H; u ¼ U; ð2Þ
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with displacement vector u, deformation gradient tensor F, and left Cauchy–Green strain tensor Bð¼ FFTÞ,
given by,

u ¼ ðf ðRÞ � RÞeR;
F ¼ f 0er � eR þ fR�1eh � eH þ fR�1eu � eU;

B ¼ ðf 0Þ2er � er þ ðfR�1Þ2eh � eh þ ðfR�1Þ2eu � eu;

ð3Þ

where ½
�0 indicates differentiation with respect to R. Matrix incompressibility det F ¼ det B ¼ 1 follows
from (3) so that,

R�2f 2f 0 ¼ 1: ð4Þ
The principal stretches kR ¼ jUeRj, kH ¼ jUeHj, kU ¼ jUeUj are given by,

kR ¼ k�2 ¼ f 0 ¼ ðR=rÞ2; kH ¼ k ¼ R�1f ¼ R�1r; kU ¼ k ¼ R�1f ¼ R�1r; ð5Þ
where Uð¼

ffiffiffiffiffiffiffiffiffi
FTF

p
Þ is the right stretch tensor and use has been made of (4). Integration of the incom-

pressibility constraint (4) yields the deformation and principal stretches,

k ¼ ð1þ C2R�3Þ1=3; kP 1; ð6Þ
where the constant in (6) is chosen to be positive so that r ¼ f ðRÞ > R for all R 2 ðR0;R1Þ.
The isotropic, incompressible hyperelastic stress–strain relation for the matrix is, T ¼ FDr̂rðFÞT � p̂p1,

where T is the Cauchy stress, r̂r is the strain energy density, p̂p is hydrostatic pressure and 1 is the unit tensor.
The symbol D indicates differentiation of the function that follows it with respect to its argument. Physical

components are given by,

Trr ¼ kR
or̂r
okR

� p̂p; Thh ¼ kH
or̂r
okH

� p̂p; Tuu ¼ kU
or̂r
okU

� p̂p: ð7Þ

Following Abeyaratne and Horgan (1985) we use (4) to write the single non-trivial equilibrium equation in

the form,

oTrr
oR

þ 2f
0

f
Trr �

f 0

f
ðThh þ TuuÞ ¼ 0: ð8Þ

The boundary condition at the outer surface of the composite sphere consists of a uniform dead load
traction applied at R ¼ R1 i.e., tðeRÞ ¼ reR, where tðeRÞ is the Piola–Kirchoff traction vector (per unit area in
the reference state) and r is assumed to be positive. The Piola–Kirchoff stress (S) is related to the Cauchy
stress (T) by, S ¼ ðdet FÞTF�T , and the traction tðeRÞ is related to the stress S by, tðmÞ ¼ Sm, m unit normal

to undeformed surface. We can therefore write the boundary condition in terms of the radial Cauchy stress

component Trr. Because the deformation is spherically symmetric, er ¼ eR and it follows that,

Trr ¼ r
r1
R1

� ��2

¼ rk�2
1 : ð9Þ

The interface boundary condition on the inner surface of the matrix is the traction sIðnÞ (per unit area in the
current configuration), sIð�erÞ ¼ �s0rer on r0 ¼ f ðR0Þ, which may be expressed as a condition on the radial
component of Cauchy stress,

Trr ¼ s0r ; on r0 ¼ f ðR0Þ: ð10Þ

The quantity s0r appearing in (10) is the normal interface traction, which defines the constitutive charac-
teristics of the interface. In this paper, we will assume that it is a uniform function of interfacial separation
(r0 � R0) only, i.e., it is independent of interface coordinate (h;u) explicitly.
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Following Levy (2001) we employ the equilibrium equation (8) and boundary conditions (9) and (10) to

determine the pressure function p̂p and the interface stretch k0ð¼ r0=R0Þ that, by (6), fixes the constant C and
determines the deformation (2). Equilibrium equation (8) may be written, with the aid of (4) and (7), in a

form that may be directly integrated to yield the pressure function,

p̂p ¼ k�2r̂r1ðk�2; k; kÞ �
Z

DŵwðkÞ
2ð1� k3Þ

dk þ K; ð11Þ

where K is constant and where we have employed the standard notation, r̂r1ðk�2; k; kÞ ¼ or̂r=ok1,
r̂r2ðk�2; k; kÞ ¼ r̂r3ðk�2; k; kÞ ¼ or̂r=ok2. For compactness we have introduced the strain energy function de-
fined by ŵwðkÞ ¼ r̂rðk�2; k; kÞ so that,

kDŵwðkÞ ¼ 2½kr̂r2ðk�2; k; kÞ � k�2r̂r1ðk�2; k; kÞ�; ð12Þ

which has been used in (11).

The equations governing the interface stretch k0 and the constant K are determined from boundary
conditions (9) and (10) and pressure (11) and are given by,

0 ¼ F ðk0; rÞ ¼ �r þ ½1þ cðk30 � 1Þ�
2=3 s0r ðk0Þ
(

�
Z k0

½1þcðk3
0
�1Þ�1=3

DŵwðkÞ
ð1� k3Þ

dk

)
; k0P 1; ð13aÞ

K ¼ �k�2
1 r þ

Z k1 DŵwðkÞ
ð1� k3Þ

dk ¼ �s0r ðk0Þ þ
Z k0 DŵwðkÞ

ð1� k3Þ
dk; ð13bÞ

where c is the volume concentration of inhomogeneity defined to be,

c ¼ R0
R1

� �3
: ð14Þ

Note that in (13a) and (13b) we have taken the interface stretch k0ð¼ r0=R0Þ as a measure of the interface
separation (r0 � R0) and we have expressed k1 in terms of k0 by virtue of (6), i.e.,

k1 ¼ ½1þ cðk30 � 1Þ�
1=3

; k1 2 ½1; k0Þ: ð15Þ

Eq. (13a) determines the evolution of normalized interface separation or displacement jump

k0 � 1ð¼ urðR0Þ=R0Þ with load r and depends on the matrix strain energy density r̂r (or ŵw) the interface force
law s0r , and the volume concentration c. The stretch then follows from (6),

k ¼ 1

"
þ R0

R

� �3
ðk30 � 1Þ

#1=3
; ð16Þ

The solution of (13a) determines the constant K by (13b) which determines the pressure p̂p from (11),

p̂p ¼ k�2r̂r1ðk�2; k; kÞ �
Z k

k1

DŵwðtÞ
ð1� t3Þ dt � k�2

1 r

¼ k�2r̂r1ðk�2; k; kÞ þ
Z k0

k

DŵwðtÞ
ð1� t3Þ dt � s0r ðk0Þ;

ð17Þ

and the stress components Trr, Thh, Tuu from (7),
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Trr ¼
Z k

k1

DŵwðtÞ
ð1� t3Þ dt þ k�2

1 r ¼ �
Z k0

k

DŵwðtÞ
ð1� t3Þ dt þ s0r ðk0Þ;

Thh ¼ Tuu ¼ k
2
DŵwðkÞ þ Trr:

ð18Þ

A discussion of the behavior predicted by (13a) and (18), for a specific strain energy density and interface

force law, is deferred to the next section after a treatment of the spherically symmetric bifurcation problem.

3. Spherically symmetric initially strained equilibrium states

3.1. Governing equations

In what follows, we consider three distinct states, the undeformed initial state, the spherically symmetric

finitely deformed reference state, and the non-symmetrical current state (obtained from the reference state
by an infinitesimal deformation). Because we have assumed that there is no directional bias in the geometry

or loading we can, without loss of generality, assume that non-symmetrical configurations are such that all

fields will be independent of longitudinal angle u. This assumption is consistent with a rigid inclusion
displacement in the e3 direction. The spherical components of the infinitesimal displacement gradient tensor

Hð¼ ruÞ consistent with this deformation are given by,

H½ � ¼

our
or

r�1
our
oh

� uh

� �
0

ouh

or
r�1

ouh

oh
þ ur

� �
0

0 0 r�1 ur þ uh cot hð Þ

2
666664

3
777775; ð19Þ

where u is the infinitesimal displacement field dependent on spherical coordinates (r; h;u) which identify
places in the reference configuration. The tensor H is subject to the incompressibility constraint trH ¼ 0.
Let DS be the incremental Piola–Kirchoff stress (force per unit area in the reference state) supporting the
infinitesimal displacement field u. The incremental stress–displacement relations follow from the general

theory of infinitesimal strain superimposed on a given finite strain and the non-zero spherical components

may be written in the form,

DSrr ¼ �Dp þ b1
our
or

;

DShh ¼ �Dp þ b2
our
or

þ b3r
�1 ouh

oh

�
þ ur

�
;

DSuu ¼ �Dp þ ðb2 � b3Þ
our
or

� b3r
�1 ouh

oh

�
þ ur

�
;

DSrh ¼ b5r
�1 our

oh

�
� uh

�
þ b4

ouh

or
;

DShr ¼ b4r
�1 our

oh

�
� uh

�
þ b6

ouh

or
;

ð20Þ

where Dp is the incremental hydrostatic pressure and the bi coefficients depend on the finite deformation

through k. Note that from (5) and (16) k may be written as a function of coordinate r,

k ¼ 1

"
� r0

r

� �3
1

 
� 1

k30

!#�1=3
: ð21Þ
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Displacement equations of equilibrium are obtained when (20) is substituted into the spherical components

of the incremental equilibrium equation divðDSÞ ¼ 0. The two non-trivial equilibrium equations and the

incompressibility equation are given by,

oDp
or

�ðb1� b4Þ
o2ur
or2

� b5r
�2 o2ur

oh2

�
þ cothour

oh
þ 2ur

�
�ðrb0

1þ 2b1� 2b2þ b3� 3b4þ b5Þr�1
our
or

¼ 0;

r�1
oDp
oh

� b6
o2uh

or2
�ðb2þ b4� b3Þr�1

o2ur
oroh

�ðrb0
4� b3þ b4þ b5Þr�2

our
oh

�
� uh

�
�ðrb0

6þ 2b6Þr�1
ouh

or
¼ 0;

our
or

þ r�1
ouh

oh

�
þ 2ur þ cothuh

�
¼ 0; ð22Þ

Note that we now employ the notation ½
�0 to indicate the derivative with respect to r. Ogden (1984) has

obtained these equations in his analysis of the bifurcation of a pressurized spherical shell. The linearity of

Eq. (22) suggests that a solution be sought in the form of an eigenfunction expansion. Because we have
assumed that the superimposed non-spherically symmetric equilibrium state is symmetric with respect to

any longitudinal plane the radial displacement ur and incremental pressure Dp are chosen to be even
functions of h while angular displacement uh is chosen to be an odd function of h. Thus, we represent the
solution in the form of an expansion of Legendre polynomials Pnðcos hÞ,

ur ¼ U0ðrÞ þ
XN
n¼1

UnðrÞPnðcos hÞ;

uh ¼
XN
n¼1

VnðrÞ _PPnðcos hÞ;

Dp ¼ P0ðrÞ þ
XN
n¼1

PnðrÞPnðcos hÞ;

ð23Þ

where _PPnðcos hÞ ¼ dPnðcos hÞ=dh and P1ðcos hÞ ¼ cos h. Ogden (1984) has shown that the substitution of (23)
into (22) leads to a single ordinary differential equation of fourth order governing mode multipliers UnðrÞ,
n ¼ 1; 2; . . . ;N ,

d

dr
fb6r4U 000

n þ ½rb0
6 þ 4b6�r3U 00

n þ ½nðnþ 1Þðb2 þ 2b4 � b3 � b1Þ � rb0
4 þ 3rb

0
6 þ b3 � b4 � b5�r2U 0

ng

� ðn2 þ n� 2Þ rb0
4

�
� b3 þ b4 þ b5 � nðnþ 1Þb5 � r

d

dr
ðrb0

4 � b3 þ b4 þ b5Þ
�
Un ¼ 0; n ¼ 1; 2; . . . ;N :

ð24Þ

The mode multipliers PnðrÞ, VnðrÞ in turn are obtained from,

P0
n ¼ ðb1 � b4ÞU 00

n þ ðrb0
1 þ 2b1 � 2b2 þ b3 � 3b4 þ b5Þr�1U 0

n þ b5r
�2½2� nðnþ 1Þ�Un; ð25aÞ

Vn ¼
1

nðnþ 1Þ ðrU
0
n þ 2UnÞ; n ¼ 1; 2; . . . ;N : ð25bÞ

The spherically symmetric (n ¼ 0) mode multipliers U0ðrÞ, P0ðrÞ follow directly from (22),

P0 ¼ K2 � 2K1
Z

ðrb0
1 � b1 � 2b2 þ b3Þr�4dr;

U0 ¼ K1r�2;
ð26Þ
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where K1, K2 are constants to be determined from external and interface boundary conditions. (Note that
V0 ¼ 0 since uh is an odd function of h.) Eq. (24) can be integrated exactly for the n ¼ 1 mode (Ogden, 1984).
In our notation the result is,

rU 00
1 þ ðk3 þ 3ÞU 0

1 ¼
C1r
kb6

; r4U 0
1 ¼ 2C1k

Z r

t4
k3 � k�3

DŵwðkÞ dt þ kC2; ð27Þ

where we have made use of the relation,

b6 ¼
k

2ðk6 � 1Þ
DŵwðkÞ: ð28Þ

b6 we take to be positive by virtue of the Baker–Ericksen inequality, i.e.,

DŵwðkÞ
k3 � 1

¼ 2k

ðk3 � 1Þ2
½kH � kR�½Thh � Trr� > 0; kP 1; ð29Þ

where use has been made of (12) and (18).

3.2. Boundary conditions

The boundary conditions consist of a dead load traction on the outer surface of the sphere and a

configuration dependent interface condition at the inner boundary of the matrix shell. The dead loading at

r ¼ r1 is an incremental, equibiaxial traction, DtðerÞ ¼ DSer ¼ Drer, where Dr is assumed positive. This
condition can be stated in terms of the displacements and their derivatives,

�Dp þ b1
our
or

¼ Dr; r ¼ r1; ð30aÞ

ðb6 � k�2
1 rÞr�1 our

oh

�
� uh

�
þ b6

ouh

or
¼ 0; r ¼ r1; ð30bÞ

where use has been made of (20) and it is understood that bi are evaluated at k ¼ k1. Note that in obtaining
(30b) we have made use of the relation, b6ðk1Þ ¼ b4ðk1Þ þ k�2

1 r, where r is the applied equibiaxial dead load
supporting the finitely deformed spherically symmetric reference state.
Appropriate measures of the displacement jump at the interface have been determined in Levy (2001),

which enables the formulation of the interface boundary condition. (Recall that the inclusion may now

displace rigidly in the superimposed infinitesimal deformation and, because of this, the interface force no

longer depends on the inner boundary displacement of the matrix but on the relative displacement of the

matrix boundary and inclusion.) Here we reiterate some of these results. The infinitesimal rigid body

translation of the inclusion in the e3 coordinate direction is, u0 ¼ w0e3 ¼ w0ðP1ðcos hÞeR þ _PP1ðcos hÞeHÞ,
where w0 is constant. Note that we are considering rigid displacements that leave the inclusion non-rotated.
Write uReR ¼ ðr0 � R0ÞeR, for the initial spherically symmetric finite displacement of points p0 on the inner
boundary of the matrix to points x0 in the reference state. The quantity r0ð¼ f ðR0ÞÞ locates points x0, which
prior to deformation, were at radius R0. The displacement of points p0 to points ~xx0ð¼ oþ ~rr0e~rrÞ on the
current, non-symmetric inner matrix boundary is, ~uu ¼ ~uureR þ ~uuheH ¼ ~rr0e~rr � R0eR, where ~rr0 locates points
which, prior to deformation were at radius R0. The infinitesimal displacement u of points x0 on the inner
matrix boundary in the reference state to points ~xx0 in the current configuration is given by, uðx0Þ ¼
~xx0 � x0 ¼ urer þ uheh ¼ ~rr0e~rr � r0er ¼ ~uureR þ ~uuheH � uReR, with r0 taken as a function of R0, and ~rr0 is a
function of r0 and h. Furthermore, er ¼ eR, eh ¼ eH exactly, because the initial finite deformation is

spherically symmetric, but generally, e~rr 6¼ er, e~hh 6¼ eh. The displacement jump at the inclusion-matrix in-
terface can be written as the difference between the displacement of matrix boundary points in the current
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configuration and the rigid displacement of the inclusion, ½~uu� ¼ ~uu� u0. For points on the interface the

reference stretch and the current stretch are,

k0 ¼
f ðR0Þ
R0

¼ r0
f �1ðr0Þ

¼ uRðR0Þ
R0

þ 1; ð31aÞ

~kk0 ¼
~rr0

f �1ðr0Þ
¼ ~uurðr0; hÞ

R0
þ 1; ð31bÞ

where we note that the second equality in (31b) holds provided we neglect terms of order Oðjuj2Þ, i.e., u is
infinitesimal. Now let u, v, ~uu, ~vv represent the normalized variables,

u ¼ ur � w0P1ðcos hÞ
r0

; v ¼ uh � w0 _PP1ðcos hÞ
r0

;

~uu ¼ ~uur � w0P1ðcos hÞ
R0

; ~vv ¼ ~uuh � w0 _PP1ðcos hÞ
R0

;

ð32Þ

where u, v represent incremental interface displacement jump components arising from the superimposed

infinitesimal deformation and ~uu, ~vv represent the normalized components of displacement jump from the
undeformed configuration to the current configuration. Then,

~uuðr0; hÞ ¼ kðr0Þ½1þ uðr0; hÞ� � 1; ~vvðr0; hÞ ¼ kðr0Þvðr0; hÞ; ð33Þ
where e~rr � er ¼ 1þOðjuj2Þ, e~hh � eh ¼ 1þOðjuj2Þ and additionally, because the initial finite deformation is
spherically symmetric, uh ¼ ~uuh.

The interface boundary condition is taken to be a configuration dependent traction sIðnÞ (force per unit
area in the current configuration) given by,

sIð�e~rrÞ ¼ �sre~rr � she~hh on ~rr0 ¼ ~ff ðr0; hÞ; ð34Þ
where e~rr, e~hh are respectively unit vectors normal and tangent to the interface in the current configuration (an

additional component su we take to be identically zero owing to the independence the displacement field on
longitudinal angle). The normal and shear interface traction components sr, sh, represent the constitutive
characteristics of the interface and are functions of the normalized interface displacement jump components
~uu, ~vv (note that from (10), srðk0 � 1; 0Þ ¼ s0r ðk0Þ). Additional restrictions placed on the constitutive functions
sr, sh are,

shð~uu; 0Þ ¼ 0;
D~vvsrð~uu; 0Þ ¼ 0;
D~uushð~uu; 0Þ ¼ 0;
srð~uu; ~vvÞ ¼ srð~uu;�~vvÞ;
shð~uu; ~vvÞ ¼ �shð~uu;�~vvÞ;

ð35Þ

where we note that (35d) implies (35b) and (35e) implies (35a) which implies (35c).

Relations (35) ensure that (i) no interfacial shear force develops in response to spherically symmetric
separation, (ii) normal and shear interface force response maintains the physically appropriate sign under

the transformation ~vv ! �~vv, (iii) no linear coupling of normal and tangential displacement jump modes. By
(33), the displacement jump components can be expressed as functions of u, v that are normalized with

respect to r0 in the reference state. The interface traction (34) is related to the incremental Piola–Kirchoff
traction in the reference configuration as follows,

Dtð�erÞ ¼ �DSer ¼ �sIðerÞ þ s0I ðerÞ þ s0I ðHTerÞ; ð36Þ
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where use has been made of the relation (Truesdell and Noll, 1965), T ¼ T0ð1þHTÞ þ DS ¼ Sþ T0H
T and

we have written, s0I ðerÞ ¼ T0er, as the interface traction supporting the reference finite deformation. Implicit

in boundary condition (36) is the fact that we have neglected terms of order Oðjuj2Þ.
Now the vector s0I ðHTerÞ ¼ s0rH

Ter may be expanded by utilizing (19) so that the final form of the in-
terface boundary condition may be obtained by combining that result with (34), (36) and (20),

½b1ðk0Þ þ s0r �
our
or

����
r0;h

� ½Dp þ ðsr � s0r Þ� ¼ 0;

½b4ðk0Þ þ s0r �r�10
our
oh

����
r0;h

"
� uhðr0; hÞ

#
þ b6ðk0Þ

ouh

or

����
r0;h

� sh ¼ 0;
ð37Þ

where s0r is the magnitude of s
0
I ðerÞ.

Rigid body inclusion equilibrium must be satisfied as well and these constraints can be written as in-

tegrals over the inclusion surface in the undeformed configuration. If we neglect terms of order OðjrujÞ and
OðjujÞ, and recall that sr, sh have been assumed to be independent of longitudinal angle u, there is only one
non-trivial equation,Z p

0

½srP1ðcos hÞ þ sh _PP1ðcos hÞ� sin hdh ¼ 0: ð38Þ

The boundary conditions governing the modes UnðrÞ, VnðrÞ, PnðrÞ in the expansions (23) follow from (30a),
(30b) and (37) and the orthogonality relations for Legendre polynomials and their derivatives,Z p

0

Pmðcos hÞPnðcos hÞ sin hdh ¼ 2

2nþ 1 dmn;Z p

0

_PPmðcos hÞ _PPnðcos hÞ sin hdh ¼ 2nðnþ 1Þ
2nþ 1 dmn:

ð39Þ

On the outer surface on the composite sphere they are given by,

�P0ðr1Þ þ b1ðk1ÞU 0
0ðr1Þ ¼ Dr; ð40aÞ

�Pnðr1Þ þ b1ðk1ÞU 0
nðr1Þ ¼ 0; n ¼ 1; 2; . . . ; ð40bÞ

r�11 ½b6ðk1Þ � k�2
1 r�½Unðr1Þ � Vnðr1Þ� þ b6ðk1ÞV 0

n ðr1Þ ¼ 0; n ¼ 1; 2; . . . ; ð40cÞ
while the interface boundary conditions are,

�P0ðr0Þ þ ½b1ðk0Þ þ s0r �U 0
0ðr0Þ ¼

1

2

Z p

0

ðsr � s0r Þ sin hdh; ð41aÞ

�Pnðr0Þ þ ½b1ðk0Þ þ s0r �U 0
nðr0Þ ¼

2nþ 1
2

Z p

0

ðsr � s0r ÞPnðcos hÞ sin hdh; n ¼ 1; 2; . . . ; ð41bÞ

r�10 ½b4ðk0Þ þ s0r �½Unðr0Þ � Vnðr0Þ� þ b6ðk0ÞV 0
n ðr0Þ ¼

2nþ 1
2nðnþ 1Þ

Z p

0

sh _PPnðcos hÞ sin hdh; n ¼ 1; 2; . . .

ð41cÞ

Note that it follows from (25a) and (25b) that for n ¼ 1 the boundary conditions (40b) and (40c) are
identical. This is also true (for n ¼ 1) for (41b) and (41c). These can be written in the final form,

b6ðk1Þr1U 00
1 ðr1Þ þ ½2b6ðk1Þ þ k�2

1 r�U 0
1ðr1Þ ¼ 0; ð42aÞ
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b6ðk0Þr0U 00
1 ðr0Þ þ 2b6ðk0ÞU 0

1ðr0Þ ¼
3

2

Z p

0

srP1ðcos hÞ sin hdh: ð42bÞ

Before applying the boundary conditions to the first two modes we note that the theory of infinitesimal

strain superimposed on a finite deformation enables us to retain only terms linear in u, v (defined in (32)) in

the Taylor expansion of srð~uu; ~vvÞ, shð~uu; ~vvÞ,
srð~uu; ~vvÞ ¼ srðk0 � 1; 0Þ þ D~uusrðk0 � 1; 0Þk0uþOðu2Þ;
shð~uu; ~vvÞ ¼ D~vvshðk0 � 1; 0Þk0vþOðv2Þ:

ð43Þ

Neglecting terms of second order, these relations will be used in boundary conditions (42a) and (42b) and

the rigid body equilibrium constraint (38) for the remainder of the paper.

3.3. The spherically symmetric bifurcation mode

Application of boundary conditions (40a) and (41a) yields the constants K1, K2 which completely de-
termines the spherically symmetric mode ur ¼ U0ðrÞ, Dp ¼ P0ðrÞ, uh ¼ 0 given by (26). (It satisfies identi-
cally the rigid body equilibrium equation (38).) By making use of (23), (32) and (39) we obtain,

�k20k
�2
1

ðk30 � 1Þ
Dŵwðk1Þ

"
þ 1

ðk30 � 1Þ
Dŵwðk0Þ þ 2ck20k

�5
1 r þ D~uusrðk0 � 1; 0Þ

#
U0ðr0Þ
r0

¼ k�1
0 k�2

1 Dr; ð44Þ

which governs spherically symmetric bifurcation and continuing spherically symmetric deformation under

the incremental load Dr. Spherically symmetric eigenmodes are obtained from the homogeneous incre-
mental problem formed by setting Dr to zero in (44). Thus, non-trivial solutions U0=r0 exist provided,

2ck20
1þ cðk30 � 1Þ

r þ k̂k1ðk0Þ2D~uusrðk0 � 1; 0Þ �
k20

ðk30 � 1Þ
Dŵwðk̂k1ðk0ÞÞ

2
4 � k̂k1ðk0Þ

k0

 !2
Dŵwðk0Þ

3
5 ¼ 0; ð45Þ

where k̂k1 is the function defined by (15). Eq. (45) indicates that the slope of the interface force law
D~uusrðk0 � 1; 0Þ can be positive or negative at bifurcation. Note that (45) is equivalent to Dk0 F ðk0; rÞ ¼ 0
where F ðk0; rÞ is given by (13a).
In order to explore the local behavior of solutions near the bifurcation points we will assume the Baker–

Ericksen inequalities are satisfied so that by (29) Dŵwðk0Þ is positive. For a given ŵw and sr let solutions to the
set (13a) and (45), when they exist, be labeled (�kk; �rr) where it is understood that there may be more then one
pair (�kk; �rr) which satisfies the equations.
To examine local behavior about a specific bifurcation point expand (13a) in a power series about

(bifurcation point) (�kk; �rr) yielding,

F ðk0; rÞ ¼ �ðr � �rrÞ þ F ð�kk; �rrÞ þ DkF ð�kk; �rrÞðk0 � �kkÞ þ 1
2
D2kF ð�kk; �rrÞðk0 � �kkÞ2 þOð3Þ; ð46Þ

where O(3) indicates a term of order ðk0 � �kkÞ3. The second term on the right-hand side of (46) vanishes by
(13a) because ð�kk; �rrÞ is an equilibrium point. The third term vanishes by (45) because ð�kk; �rrÞ is a bifurcation
point. Local behavior near the bifurcation point is therefore governed by the approximation,

v � x2k ¼ 0; ð47aÞ

v ¼ 2ðr � �rrÞ
D2kF ð�kk; �rrÞ

; xk ¼ k0 � �kk; ð47bÞ
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where we have neglected the term O(3). If D2F ð�kk; �rrÞ 6¼ 0 then (47a) is the generic form of the saddle node
bifurcation from which it follows that local behavior is governed by the sign of the second derivative
D2F ð�kk; �rrÞ. In particular, if D2F ð�kk; �rrÞ > 0 then r � �rr > 0 and the bifurcation diagram has the form given in
Fig. 1(a). If D2F ð�kk; �rrÞ < 0 then r � �rr < 0 and the bifurcation diagram has the form shown in Fig. 1(b).
Note that the broken lines in Fig. 1(a), (b) represent unstable behavior as defined by the energy criterion

with energy U defined through its gradient, i.e., DU ¼ F . The second derivative D2kF ð�kk; �rrÞ may be deter-
mined from (13a) but will not be presented since it yields no qualitative information about the behavior. In

the following section we will examine the response for a particular matrix strain energy ŵw and a specific
interface force law sr. We close this section by considering a number of special cases. Their governing
equations are obtained by suitable restriction of (13a) and (45). In particular, we consider the case of an
unbounded matrix, the case of a thin matrix shell, and a non-linear infinitesimal strain theory for the

composite sphere.

3.3.1. The unbounded matrix

Let R1 become infinite which, by (14), requires that c vanish. The interface equation (13a) becomes,

0 ¼ F ðk0; rÞ ¼ �r þ s0r ðk0Þ þ
Z k0

1

DŵwðkÞ
ðk3 � 1Þ

dk; k0P 1; ð48Þ

while the bifurcation condition (45) assumes the form,

Dk0s
0
r ðk0Þ ¼ � Dŵwðk0Þ

ðk30 � 1Þ
¼ � 2k0

ðk30 � 1Þ
2
½kH � kR�½Thh � Trr�; ð49Þ

where use has been made of (29) and we have set Dŵwð1Þ ¼ 0 implying that there is no residual stress. Note
that by the Baker–Ericksen inequalities we have the result that for the unbounded matrix bifurcation al-

ways occurs when Dk0s
0
r ðk0Þ < 0, i.e., the interface force is on the descending branch of the force–separation

curve. Eqs. (48) and (49) directly parallel equations obtained in the planar analysis of Levy (2001).

Fig. 1. (a) The saddlenode bifurcation: D2F ð�kk; �rrÞ > 0; (b) The saddlenode bifurcation: D2F ð�kk; �rrÞ < 0.
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The thin matrix shell. Let the parameter e be defined by 3ðR1 � R0Þ=R0 so that the volume concentration
c ¼ 1� e þOðe2Þ. The interface equation for this case is obtained by taking a Taylor series of (13a) about
e ¼ 0 and retaining terms linear in e. The result is,

0 ¼ F ðk0; rÞ ¼ r � 1
3
Dŵwðk0Þe � k20s

0
r ðk0Þ: ð50Þ

The bifurcation condition follows similarly from (45) or, directly from (50),

Dk0s
0
r ðk0Þ ¼ �2k�1

0 s0r ðk0Þ � 1
3
ek�2
0 D2ŵwðk0Þ ð51aÞ

¼ �2k�3
0 r þ 2

3
ek�3
0 Dŵwðk0Þ � 1

3
ek�2
0 D2ŵwðk0Þ: ð51bÞ

It is apparent from (51a) that Dk0s
0
r ðk0Þ < 0 since s0r is always positive for k0 > 0 and the second term on the

right-hand side of (51a) is a term of order e. Thus, is this case bifurcation occurs on the descending branch
of the interface force–separation curve as well.

3.3.2. Infinitesimal strain theory

Here we obtain infinitesimal strain forms of interface equation (13a), and bifurcation condition (45).

First, assume that the interface force s0r ðk0Þ generally depends on an additional (dimensionless, positive)
length parameter q, which characterizes the range of action of the interface force law. We seek the as-
ymptotic form of (13a) for infinitesimal displacement jump (k0 � 1) requiring that ðk0 � 1Þq�1 remains fi-

nite. The limit process that we employ ensures that the resulting infinitesimal strain theory is capable

of capturing non-linear decohesive phenomena for interface forces that are short-range. Introduce the

variables K, K0 defined by ðk � 1Þq�1, ðk0 � 1Þq�1, respectively. Then a Taylor series of (13a) about q ¼ 0
implies that,

r � ½1þ 2cqK0�srðK0Þ � 1
3
D2ŵwð1Þqð1� cÞK0 þOðq2Þ ¼ 0; ð52Þ

where we have used the fact that there is no residual stress so that Dŵwð1Þ ¼ 0. By neglecting the term Oðq2Þ
in (52) we obtain the incompressible form of the infinitesimal interface equation for spherically symmetric

separations. A similar argument applied to bifurcation condition (45) generates the infinitesimal strain

version of that equation,

DsrðK0Þ ¼ �
1
3
qð1� cÞD2ŵwð1Þ þ 2cqr

ð1þ 2cqK0Þ2
: ð53Þ

Thus we have the result that for the infinitesimal strain theory bifurcation always occurs when DsrðK0Þ < 0,
i.e., the interface force is on the descending branch of the force–separation curve. Note that (52) includes a

term 2cqK0sr, small compared to unity, which does not appear in the form that results from a direct
derivation from linear theory.

3.4. The Mooney–Rivlin solid

We illustrate the theory for a composite matrix shell consisting of Mooney–Rivlin material which, for

deformation (5), may be characterized by,

ŵwðkÞ ¼ l
2

1

2

��
þ b

�
ðk�4 þ 2k2 � 3Þ þ 1

2

�
� b

�
ðk4 þ 2k�2 � 3Þ

�
; ð54Þ

with l > 0 and � 1
2
6 b6

1
2
. For this material the pressure function (17) and the stress components (18) can

be obtained in the closed form,
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p̂p
l
¼ � 1

2

�
� b

�
k4 þ ð1� 2bÞðk � k1Þ � ð1þ 2bÞðk�1 � k�1

1 Þ � 1

2

�
� b

�
ðk�2 � k�2

1 Þ þ 1
2

1

2

�
þ b

�
ðk�4 þ k�4

1 Þ � rk�2
1

Trr
l

¼ �ð1� 2bÞðk � k1Þ þ ð1þ 2bÞðk�1 � k�1
1 Þ þ 1

2

�
� b

�
ðk�2 � k�2

1 Þ þ 1
2

1

2

�
þ b

�
ðk�4 � k�4

1 Þ þ rk�2
1

Thh

l
¼ Tuu

l
¼ Trr

l
þ 1

2

�
� b

�
ðk4 � k�2Þ þ 1

2

�
þ b

�
ðk2 � k�4Þ; ð55Þ

where k1 is given by (15). Together with (15) and (16) these expressions give the pressure and stress fields as
explicit functions of radial coordinate provided we can determine the interface stretch k0 from the interface
equation (13a).

For the Mooney–Rivlin strain energy density (54) the interface equation (13a) and the bifurcation
condition (45) become,

F ðk0; rÞ ¼ rlk̂k
�2
1 ðk0Þ þ ð1� 2bÞðk0 � k̂k1ðk0ÞÞ �

1

2

1

2

�
þ b

�
ðk�4
0 � k̂k�4

1 ðk0ÞÞ �
1

2

�
� b

�
ðk�2
0 � k̂k�2

1 ðk0ÞÞ

� ð1þ 2bÞðk�1
0 � k̂k�1

1 ðk0ÞÞ þ slðk0Þ; ð56aÞ

Dk0F ðk0; rÞ ¼ 0; ð56bÞ

where k̂k1 is the function defined by the relation (15). Note that in (56a) and (56b) rl and sl are the remote
load and interface force normalized with respect to shear modulus l. The solutions of equations (56a) and
(56b) are contained in the set f�kk; �rrlg with local behavior near these points governed by (47a) and (47b).
Note that the sign of the denominator of (47a) and (47b), and ultimately the character of the bifurcation

behavior, will depend on a particular bifurcation point �kk, �rrl considered.

The interface equation and bifurcation condition governing the limiting cases of the unbounded

Mooney–Rivlin matrix and the Mooney–Rivlin matrix shell follow directly from (54), (48) and (49) (un-

bounded matrix) and (54), (50), (51a), (51b) (thin matrix shell) and will not be presented. Because of their
simplicity we do however present the equations of the infinitesimal strain theory to which all hyperelastic

matrix material equations must ultimately collapse in the limit of infinitesimal deformations. Eqs. (52) and

(53) together with the fact that D2ŵwð1Þ ¼ 12l yields,

rl � ½1þ 2cqK0�slðK0Þ � 4qð1� cÞK0 ¼ 0;

DslðK0Þ ¼ �2q 2ð1� cÞ þ crl

ð1þ 2cqK0Þ2
;

ð57Þ

where it is recalled that K0 ¼ ðk0 � 1Þq�1 is defined to be the normalized interface displacement jump and q
is a characteristic (non-dimensional) length of the interface force law.
Assume interface response is characterized by the simple physically based normal exponential force law

of Ferrante et al. (1982), modified to account for interfacial shear,

srð~uu; ~vvÞ ¼ esmax
~uu
q

8<
: � 1

2
g

~vv
q

 !29=
;e�~uu=q;

shð~uu; ~vvÞ ¼ esmax g
~vv
q

( )
e�~uu=q;

ð58Þ

where the single parameter g(P 0) is a measure of both the shear stiffness of the interface and the strength
of the coupling between the normal and tangential separation modes. The quantity smax is the interface
strength, and q is a phenomenological force length parameter normalized with respect to inclusion radius R0
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(Fig. 2 illustrates interface response in purely normal separation srðk0 � 1Þ). 1 This simple model charac-
terizes non-linear normal separation and linear shear slip consistent with the constraints (35). It, and other

more sophisticated models, has been discussed at length in Needleman (1992). Note that the assumed

linearity in interfacial shear slip ~vv is appropriate since ~vv vanishes for spherically symmetric equilibrium
states and we are concerned with initial bifurcation behavior only.

For this force law the behavior of interface equation (56a) is depicted in Fig. 3, which illustrates the
effect of concentration c on the evolution of interface stretch k0 with normalized load rl. These curves were

drawn for the neo-Hookian matrix (b ¼ 1=2) and for interface parameter values smax ¼ 0:25l, and
q ¼ 0:25. For the first bifurcation point (smallest k0) (for c ¼ 0:75) the denominator of the first term of
(47b) is negative so the bifurcation point ð�kk ¼ 1:4766; �rrl ¼ 0:5975Þ is a saddle node of the kind depicted in
Fig. 1(b). The second bifurcation point ð�kk ¼ 2:4003; �rrl ¼ 0:4688Þ renders the denominator of the first term
of (47b) positive so the point is a saddle node depicted in Fig. 1(a). Furthermore, Fig. 3 clearly indicates

that increasing the concentration c past a critical value can precipitate bifurcation. For smax ¼ 0:25l and
q ¼ 0:25 that value is obtainable numerically and is given by c ¼ 0:5038 as indicated in the figure. Fig. 4
depicts the effect of force length parameter (q) on response at fixed concentration (c ¼ 0:50). The figure
indicates that there is a threshold value of force length parameter q above which bifurcation is not pos-
sible. For smax ¼ 0:25l that value is obtainable numerically and is given by q ¼ 0:2384 as indicated in the
figure. Fig. 5 depicts curves of normalized circumferential and radial stress at the interface as a function of

r=l for q ¼ 0:25 and for two values of volume concentration (c). For c ¼ 0:50 the radial stress (equal to
the interface traction) at bifurcation abruptly decreases as the interface unloads. This is accompanied by a

jump in the circumferential stress. For c ¼ 0:25 no such bifurcation occurs and the radial (circumferential)
stress gradually decreases (increases). Note that for small values of remote load the response is that of the
rigidly bonded linear elastic solution (dotted line in the Fig. 5). The void solution of the linear elastic

problem is not obtained as the remote load increases (and the interface unloads) due to the influence of

finite strain.

Fig. 2. The interface force law.

1 Note that when g ¼ 0, sr is independent of ~vv. In that case we write the interface force as srðk0 � 1Þ.
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3.5. The rigid body bifurcation mode

Consider now the more interesting n ¼ 1 rigid body mode. Eqs. (27) governing U1 together with
boundary conditions (42a) and (42b) and rigid body equilibrium constraint (38) and (43) yield, after some

algebra,

Cðk0; rÞ
Uðk0; rÞ þ c5=3D~uusrðk0 � 1; 0ÞRðr0Þ

D~uusrðk0 � 1; 0Þw0 ¼ 0; ð59aÞ

fUðk0; rÞ þ c5=3D~uusrðk0 � 1; 0ÞRðr0ÞgC1 ¼ c5=3D~uusrðk0 � 1; 0Þw0; ð59bÞ

C2 ¼ Wðr1; rÞC1; ð59cÞ

Fig. 3. Interface stretch vs normalized remote load: smax ¼ 0:25l, q ¼ 0:25.

Fig. 4. Interface stretch vs normalized remote load: smax ¼ 0:25l, c ¼ 0:50.
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where the functions U, C, W, R are defined by,

Uðk0; rÞ ¼ c5=3R20k
�2
0 ðk30 � 1Þ

2=3Dŵwðk0Þ
Z k0

k1

ðk3 � 1Þ�2=3 k
2D2ŵwðkÞ � kDŵwðkÞ

½DŵwðkÞ�2
dk

þ 2rR
2
0k
2
1k

�2
0 ðk31 � 1Þ

2ðk30 � 1Þ
�1Dŵwðk0Þ

Dŵwðk1Þ½k31Dŵwðk1Þ � 2rðk
3
1 � 1Þ�

; ð60aÞ

Cðk0; rÞ ¼ � D~uusrðk0

"
� 1; 0Þ þ 2D~vvshðk0 � 1; 0Þ 1

 
� k30 � 1
Dŵwðk0Þ

D~uusrðk0 � 1; 0Þ
!#

Uðk0; rÞ

þ D~uusrðk0 � 1; 0ÞD~vvshðk0 � 1; 0Þ
2c5=3R20ðk

3
0 � 1Þ

Dŵwðk0Þ
: ð60bÞ

Wðr1; rÞ ¼
2k51ðk

3
1 � 1ÞR51

k31Dŵwðk1Þ � 2rðk
3
1 � 1Þ

"
� 2

Z r1

t4
k3 � k�3

DŵwðkÞ dt
#
; ð60cÞ

Rðr0; r1; rÞ ¼ 2
Z r0

kðzÞz�4
Z z

t4
k3ðtÞ � k�3ðtÞ
DŵwðkðtÞÞ dt

" #
dzþ Wðr1; rÞ

Z r0

kðzÞz�4dz: ð60dÞ

Eqs. (44) and (59a)–(59c) govern spherically symmetric and non-symmetric bifurcation arising from non-

linear interface characterization as well as from non-linear matrix response at finite strain.

The solution to the problem of the pressurized spherical shell treated by Ogden (1984) is recovered in the

present analysis by assuming there is no load applied to the outer boundary while the loading on the inner

boundary is a constant pressure P. In boundary conditions (42a) and (42b) this amounts to setting the dead

loading r, as well as the integral on the right-hand side of (42b), to zero. Then from (60a) and (59b) the
bifurcation condition becomes,

Fig. 5. Normalized radial and circumferential boundary stress: smax ¼ 0:25l, q ¼ 0:25.
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Uðk0; 0ÞC1 ¼ 0;

Uðk0; 0Þ ¼ c5=3R20k
�2
0 ðk30 � 1Þ

2=3Dŵwðk0Þ
Z k0

k1

ðk3 � 1Þ�2=3 k
2D2ŵwðkÞ � kDŵwðkÞ

½DŵwðkÞ�2
dk:

ð61Þ

Bifurcation to an n ¼ 1 mode is possible when Uðk0; 0Þ ¼ 0, otherwise C1 and C2 (by (59c)), vanish. Note
that in this case bifurcation signals a transition in deformation mode arising from bulk matrix response

characterized by strain energy density ŵw.
The spherically symmetric eigenmode has been considered in the previous section. Consider the non-

symmetric eigenmode governed by (59a)–(59c). Bifurcation to a rigid body mode requires the satisfaction of

(59a) for w0 6¼ 0. This is possible when,
0 ¼ Cðk0; rÞ

¼ � D~uusrðk0

"
� 1; 0Þ þ 2D~vvshðk0 � 1; 0Þ 1

 
� k30 � 1
Dŵwðk0Þ

D~uusrðk0 � 1; 0Þ
!#

Uðk0; rÞ

þ D~uusrðk0 � 1; 0ÞD~vvshðk0 � 1; 0Þ
2c5=3R20ðk

3
0 � 1Þ

Dŵwðk0Þ
: ð62Þ

Note that D~uusrðk0 � 1; 0Þ will not generally vanish unless the constitutive characteristics of the interface are
such that the interface cannot support shear, i.e., sh ¼ 0. This case will be treated separately. Condition (62)
involves both k0 and r and therefore must be coupled to (13a) in order to obtain the critical values of stretch
and load at bifurcation. By (59b) and (59c) C1 and C2 do not vanish so the matrix shell has a non-vanishing
deformation mode proportional to U1ðrÞP1ðcos hÞ, V1ðrÞ _PP1ðcos hÞ.
The inhomogeneous problem, corresponding to continuing spherically symmetric equilibrium with

Dr 6¼ 0 and w0 ¼ 0, is governed by (44). In order for solutions to exist the coefficient of U0=r0 cannot
vanish, i.e., (45) cannot hold. The (Fredholm) alternative is that (45) holds and there are non-trivial

solutions to the homogeneous problem but then solutions to the inhomogeneous problem do not exist. A
non-symmetric solution associated with (44) requires that Dr 6¼ 0 and w0 6¼ 0. Here the eigenmode with
multipliers U1ðrÞ, V1ðrÞ is orthogonal to the incremental loading as required. In what follows, we provide
explicit results for the case of the composite sphere with smooth interface, and the case of the unbounded

matrix with general interface constitutive characteristics.

3.5.1. The smooth interface (sh ¼ 0, sr independent of uh)

When the interface is smooth, i.e., it cannot support shear, the bifurcation conditions simplify consid-

erably so that (59a) is satisfied for w0 6¼ 0 when,
D~uusrðk0 � 1Þ ¼ 0: ð63Þ

This condition simply states that the rigid body bifurcation mode may occur when the interface force at-

tains its maximum value. Note that for the smooth interface, the composite shell will have vanishing de-
formation modes U1ðrÞP1ðcos hÞ, V1ðrÞ _PP1ðcos hÞ. This follows directly from (59b) and (59c) where C1, C2 and
therefore V1, U1 are zero.
Now assume that the non-linear normal interface force–separation relation srðk0 � 1Þ takes its maximum

value smax at k0 ¼ 1þ q where smax > 0 and q > 0 (e.g. (58) with ~uu ¼ k0 � 1, g ¼ 0). Then, srðqÞ ¼ smax,
Dk0srðqÞ ¼ 0. Thus, from (63) bifurcation occurs when the interface force attains its maximum value smax
which occurs at an interface stretch k0 ¼ 1þ q. If we further assume that the matrix is unbounded we have
the result that, for the smooth interface, non-symmetric bifurcation always precedes spherically symmetric

bifurcation. This follows from the fact that the interface force–separation relation has, by assumption, a
single absolute maximum on k0 2 ½1;1� and, for spherically symmetric bifurcation Dk0srðk0 � 1Þ < 0 (recall
(49)). For the finite matrix shell we have shown that spherically symmetric bifurcation may occur when
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Dk0srðk0 � 1Þ is positive or negative so no general statement can be made regarding the order of bifurcation.
Note that, unlike spherically symmetric bifurcation, there is no threshold value of q for which bifurcation
will not occur. Now recall (13a). For the finite matrix shell the critical load at bifurcation is,

r ¼ ½1þ cðð1þ qÞ3 � 1Þ�2=3 smax

(
þ
Z 1þq

½1þcðð1þqÞ3�1Þ�1=3

DŵwðkÞ
ðk3 � 1Þ

dk

)
; ð64Þ

and for the unbounded matrix (c ¼ 0) we have the simple result,

r ¼ smax þ
Z 1þq

1

DŵwðkÞ
ðk3 � 1Þ

dk: ð65Þ

Now ½1þ cðð1þ qÞ3 � 1Þ�1=3 2 ð1; 1þ qÞ for c 2 ð0; 1Þ and q > 0. Then by the Baker–Ericksen inequality
(29) the critical load (64) (or (65)) always exceeds the interface strength smax. Note that the critical load at
bifurcation depends only on the matrix strain energy density, the volume concentration, the maximum

value of interface force, and the interface stretch at which this is attained. For a matrix modeled as a

Mooney–Rivlin solid with strain energy density given by (54), the critical load relation (64) (and (65)) may
be integrated exactly although the result is cumbersome and therefore shown only in graph form. Fig. 6 is a

plot of critical load (normalized with respect to matrix shear modulus) versus interface force length pa-

rameter at various values of concentration for smax ¼ 0:25l and b ¼ 1=2 (neo-Hookian solid). As expected
for a fixed concentration the critical load increases with increasing force length parameter. Also, the curves

indicate that at a fixed force length parameter the critical load decreases with increasing value of con-

centration. This last result is not generally true and is a consequence of the relative values of interface

strength and matrix shear modulus. For example for interface strength equal to the shear modulus in-

creasing concentration increases the critical load for a range of values of force length parameter (q).
We record here the critical load for an infinitesimal strain non-linear theory. Let k ¼ qK þ 1 and expand

(64) in a series about q ¼ 0 keeping only linear terms in q. Then,

r ¼ ð1þ 2cqÞsmax þ
1

3
ð1� cÞD2ŵwð1Þq: ð66Þ

The effect of concentration in this formula is transparent and is clearly influenced by the relative magni-

tudes of interface strength smax and matrix shear modulus (proportional to D2ŵwð1Þ).

Fig. 6. Critical load vs force length parameter: smooth interface, smax ¼ 0:25l.
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3.5.2. The unbounded matrix (c ¼ 0)

Eqs. (59a)–(59c), (60a)–(60d) govern the non-symmetric eigenmode for the finite matrix shell assuming

that c 2 ð0; 1Þ. The equations governing the unbounded matrix follow by setting c ¼ 0 (or r1 ¼ k1R1 " 1).
More specifically, (59a) becomes,

D~uusrðk0

(
� 1; 0Þ þ 2D~vvshðk0 � 1; 0Þ 1

"
� k30 � 1
Dŵwðk0Þ

D~uusrðk0 � 1; 0Þ
#)

D~uusrðk0 � 1; 0Þw0 ¼ 0; ð67Þ

while (59b) implies that C1 ¼ 0. However, (59c) does not imply that C2 is necessarily zero. This is because
the function W becomes unbounded as r1 becomes infinite. If D~uusrðk0 � 1; 0Þ is infinitesimal, then (67)
implies that to an infinitesimal quantity squared, ½D~uusrðk0 � 1; 0Þ þ 2D~uusrðk0 � 1; 0Þ�D~uusrðk0 � 1; 0Þw0 ¼ 0:
In that case U1ðr0Þ ¼ V1ðr0Þ ¼ 0 by (38) and (43). Then by (25b) and (27) it follows that C2 ¼ 0 and
U1ðrÞ ¼ V1ðrÞ ¼ 0. For the unbounded matrix then, bifurcation to a rigid body mode is possible, with
U1 ¼ V1 ¼ 0 and w0 6¼ 0, when,

0 ¼ D~uusrðk0 � 1; 0Þ þ 2D~vvshðk0 � 1; 0Þ: ð68Þ

The critical load and critical interface stretch at bifurcation are obtained below.

Interface force law (58) together with bifurcation condition (68) may be solved to yield the critical value
of interface stretch k0 at bifurcation,

k0 ¼ 1þ qð1þ 2gÞ: ð69Þ

The critical load at bifurcation then follows from (48),

r ¼ srðqð1þ 2gÞÞ þ
Z 1þqð1þ2gÞ

1

DŵwðkÞ
ðk3 � 1Þ

dk: ð70Þ

Note that, because q; g P 0 and DŵwðkÞðk3 � 1Þ�1 > 0 for kP 1, the quantity srðqð1þ 2gÞÞ forms a lower
bound to the critical load.

The critical load for an infinitesimal strain non-linear theory follows by substituting k ¼ qK þ 1 into (70)
and expanding in a series about q ¼ 0 keeping only linear terms in q. The critical load in this case is,
r ¼ ð1þ 2gÞsmaxe�2g þ ð1þ 2gÞD2ŵwð1Þq=3:
For the Mooney–Rivlin matrix with strain-energy density given by (54) the critical load may be obtained

in closed form from (70). The result is shown graphically in Fig. 7, which is a plot of critical load (nor-

malized with respect to shear modulus) versus force length parameter for various values of interfacial shear

stiffness parameter and for smax ¼ 0:25l and b ¼ 1=2 (neo-Hookian solid). The plot seems to indicate that,
at fixed force length, the critical load increases with increasing shear stiffness, which is physically reason-

able. However, in Fig. 8 we show a blow up of the same plot for a smaller interval of force length pa-

rameter. This plot indicates the paradoxical result that, for small force length parameter, the critical load

decreases with increasing interfacial shear stiffness. In this case it turns out that for a range of values of
interface shear stiffness parameter, the critical load for non-symmetrical bifurcation lies on a branch of

equilibrium states that is unreachable by continuous increase in load from the undeformed state. When this

occurs, the first bifurcation point will be spherically symmetric. Note that the smallest critical interface

stretch k0, from (69), always increases with increasing shear stiffness.
The bifurcation domains in g–q parameter space may be obtained as in Levy (2001), by simply equating

the critical loads for non-symmetrical bifurcation to that of the critical load for symmetrical bifurcation.

Thus we solve (48), (49) and (70) for the curve q̂qðgÞ which defines the boundary between symmetric and
non-symmetric bifurcation. For smax ¼ 0:25l and b ¼ 1=2 (neo-Hookian solid) the results, which are
qualitatively the same as the planar problem, are shown in Fig. 9(a). In order to explain the behavior in

each domain represented in the figure we utilize the following notation defined in Fig. 9(b). A horizontal
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line represents the spherically symmetric response projected on the r=l axis so that the remote load ratio as
well as spherically symmetric equilibrium states lies on this line. The circles designate spherically symmetric

bifurcation points, which generally exist in pairs. Note that, as shown in Fig. 9(b), the second spherically

symmetric bifurcation point is unreachable by continuous increase in load from the undeformed state al-

though it occurs at a smaller critical load then the first point. Consider now Fig. 9(a). Branches of non-

symmetric equilibria (accompanied by rigid inclusion displacement) are indicated by a short vertical line

that initiates from a non-symmetric bifurcation point denoted by a cross. An open circle indicates a

spherically symmetric bifurcation point on the current branch. A circle with the horizontal line passing

through it situated to the left (right) of the open circle indicates that the spherically symmetric bifurcation
point lies on a branch above (below) the current one. The solid line divides the domains in which non-

symmetric bifurcation and spherically symmetric bifurcation dominate. The horizontal line (solid and

Fig. 8. Critical load vs force length parameter: unbounded matrix, smax ¼ 0:25l.

Fig. 7. Critical load vs force length parameter: unbounded matrix, smax ¼ 0:25l.
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dotted) indicates the threshold above which spherically symmetric bifurcation cannot occur. The dashed

line of the figure is a solution to the equations arising from equating the unreachable ‘‘symmetrical’’ critical

load to the ‘‘non-symmetrical’’ critical load. Note that Fig. 9(a) is incomplete in the sense that global non-

symmetrical behavior is not represented owing to the fact that our analysis is based on infinitesimal non-

symmetric strain superposed on a given finite spherically symmetric deformation. In order to predict the

criticality of the pitchfork bifurcations initiating from non-symmetric points at least one more term would

need to be taken in the superposed non-symmetrical strain. Two possibilities, which correspond to the
second and first order phase transformations described by Ericksen (1991), are indicated in Fig. 10(a), (b)

(note that the horizontal lines in the figures correspond to equilibrium states also). The first characterizes

the gradual rigid displacement of the inclusion while the second describes an abrupt movement. Even if the

Fig. 10. (a) Global portrait near supercritical pitchfork bifurcation point. Mode vs bifurcation parameter; (b) global portrait near

subcritical pitchfork bifurcation point. Mode vs bifurcation parameter.

Fig. 9. (a) Parameter regions of the first bifurcation point: Mooney–Rivlin, smax ¼ 0:25l (spherically symmetric bifurcation point O;
non-symmetric bifurcation point X); (b) notation.
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local behavior near the bifurcation points is completely known the behavior in certain cases may still be

indeterminate. As an example consider systems whose (g; q) parameters lie in the domain characterized by a
non-symmetric bifurcation point which resides between two symmetric points. Clearly, a complete picture

of the behavior is possible only with a detailed study of the global structure of branches of equilibria. For a
detailed analysis of global issues of this sort, in the context of infinitesimal plane strain, see Levy (1998).

4. Closure

This paper has examined aspects of cavity formation by interfacial separation in a radially loaded

composite sphere deforming at finite strain. In particular, such issues as symmetrical/non-symmetrical

bifurcation and gradual (ductile) and abrupt (brittle) decohesion have been addressed. Taken together the

results presented indicate the influence on the separation process of factors such as concentration, interface
force length parameter (or interface energy) and interfacial shear stiffness. For small values of interface

force length parameter, finite strain issues will have minimal effect on spherically symmetric bifurcation

(and non-symmetrical bifurcation) 2 but not necessarily on the post bifurcation cavity growth process.

However, in materials deforming non-linearly at infinitesimal strain quantities such as yield strength and

strain hardening exponent can be expected to significantly affect bifurcation and subsequent cavity growth

(Levy, 2002). Furthermore, factors such as non-uniformities in interface strength, slight departures from

sphericity, or even the existence of remotely situated inhomogeneities, will play a critical roll by biasing the

cavity formation process in a particular direction (this has been demonstrated by Levy and Hardikar (1999)
in a planar, infinitesimal strain setting). This feature of cavity formation by inclusion debonding under-

scores the inherent difficulty in predicting cavity shapes for even the simplest of geometries and loadings.

The range of validity of analyses of cavity formation at inhomogeneities based on a priori enforced

symmetry constraints will therefore depend on factors such as interfacial shear stiffness which, as shown in

this paper, can delay non-symmetrical bifurcation but never eliminate it.
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